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J. Phys. A: Math. Gen., Vol. 11, No. 4, 1978. Printed in Great Britain. @ 1978 

Electrons in logarithmic potentials 11. Solution of the Dirac 
equation 

F Gesztesyt and L Pittner 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 12 August 1977, in final form 3 November 1977 

Abstract. We derive the asymptotic behaviour of the general solution of Dirac’s 
equation for an electron in a logarithmic potential from stability theorems and investigate 
the energy spectrum, thereby recognising significant differences in comparison with 
corresponding properties of the Schrodinger equation. An uniformly convergent 
perturbation expansion of the general solution is presented, in analogy to our treatment of 
the Schrodinger equation, which may be used to compute biprisma interferences of 
electron waves. 

1. Introduction 

In our first paper (Gesztesy and Pittner 1978, to be referred to as I) on logarithmic 
potentials we have solved each radial Schrodinger equation by an uniformly con- 
vergent perturbation expansion. Since the electrons are accelerated to relativistic 
energies in the interference experiments (Mollenstedt and Duker 1956, Donati et a1 
1973, Merli et a1 1976) quoted in 0 1 of I, we shall now investigate the Dirac equation. 
This attempt leads to the recognition of significant differences between corresponding 
properties of the Schrodinger and Dirac equations which we shall at first describe 
qualitatively. 

Due to the electron spin each of the coupled radial equations resulting from the 
separation of variables in the Dirac equation is in the limit point case near zero, as can 
be seen from the asymptotic behaviour near zero of its general solution; the limit 
circle case does not occur here, in contrast to the Schrodinger equation. The oscillat- 
ing nature of the general asymptotic solution near infinity forbids discrete eigenvalues 
of the Dirac operator. The essential spectrum of each radial operator is continuous 
and covers the whole real line, both in the attractive and repulsive cases, due to the 
possible appearance of positrons. 

At first the general solution of each radial Dirac equation is approximated asymp- 
totically near zero and infinity, and then it is represented in terms of the uniformly 
convergent perturbation expansion which corresponds to our rigorous solution of the 
Schrodinger equation. 

2. Self-adjointness and angular momentum expansion 

The formal differential operator 

T = a. V/i+pm + V (2.1) 
t Supported by Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich, Projekt Nr. 3225. 
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with the usual Dirac matrices a, p (for our notation see Bjorken and Drell 1964) and 
the logarithmic potential 

(2.2) 
2 2 1 / 2  V(r) = E ln(r/b), r = [ ( x 1 l 2 + ( x  ) 1 >o,  

may be transformed to cylindrical coordinates r, 4, x 3  via the notations 

the insertion of which yields 

(2.4) 3 a  

I ax 
T = ~ + D - + ~ - D + + ~  x + p m + ~ .  

The logarithmic potential is relatively bounded with respect to the free Dirac 
operator in the Hilbert space {L2(R3)}4 with relative bound smaller than one, because 
of V E L:””(R3), and therefore the following statement holds (Jorgens 1973). 

Theorem 2.1. The restriction TI{C? (!R3)}4 is essentially self-adjoint. 

On Dirac spinors of the product form [ ei l*gr(r)  j q j + ) ( r ,  4 )  = rP1l2 3 

i ei(l+lMg;T) 

0 

q j - ) ( r ,  4 )  = r - l l 2  

the formal differential operators describing the projections of total angular momen- 
tum and spin perpendicular to the plane of motion ( x 3  = 0) act in the following way: 

with any integer number 1. The formal energy eigenvalue equation 
TQI” = E@{*’ 

is decomposed into the two ordinary matrix differential equations 

(2.8) 1=0,  *l, * 2  , . . . .  
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Each of these radial equations is in the limit point case near zero and infinity, as 
can be learned from the asymptotic behaviour of their solutions to be derived in the 
next section. For any integer 1 there are solutions g$)(r) ,  i = 0, 1, which are square- 
integrable near zero, and others which are not of this type. Due to the electron spin 
the limit circle case does not show up here, because the total angular momentum 
never vanishes. 

3. Asymptotic solutions and spectral properties 

With the notations 

our differential equations (2.8) take the matrix form 

( g ) G ? ) ( r ) =  Wj*)(r)Gj*)(r),  I = O ,  *1, *2 ) . . . .  

Aiming firstly at the asymptotic behaviour near zero, we transform 

G F ) ( r ) =  Yj*'(x)= x = ln(r/b), (3.3) 

and obtain the matrix differential equation 

($) YF'(x)= ( C P  +B(*)(x) )Yj*) (x) ,  

where p = be, A = b(E + m ) ,  = b(E - m), the general solution of which is an entire 
function. Stability theorems about systems of linear differential equations (Coppel 
1965) teach us that the general solution behaves asymptotically as 

or equivalently 

These two general solutions show the features indicated at the end of the preceding 
section, 

The general solution of equation (3.2) can be approximated asymptotically near 
infinity via the transformation 

G r ) ( r ) =  Hr)(r), t =p(ln p - l), p = r / b ~ = l ,  (3.7) 
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which leads to the matrix differential equation 

The limit matrix 

(3.9) 
0 1  

1 - 0 0  - 1  0 A(*) = lim Ay’ ( f )  = f P[  3 
possesses the eigenvalues and eigenvectors 

The characteristic equation 

det(Aij“(t)- a y ’ ( f ) )  = 0 (3.11) 

determines the eigenvalues 

a(;fr)(t>= -ag>( t )=  *iwl(t), (3.12) 

wr(t)={(P--hllnP)(P -wbn In P)I21”*1 

such that 

lim a E> ( t )  = a“’, k = 1, 2. (3.13) 

Again stability theorems (Coppel 1965) may be applied to derive the general asymp- 
totic solution 

t - s i  
lim wdt) = lpl, 
1 - a 3  

r E 
b € 

h(r) = - [In(;) - 1 -- + 0(1)], r + Co. 

(3.14) 

(3.15) 

Since this general solution is oscillating as r -* 00, no solution at all is square-integrable 
near infinity. 

Since each radial Dirac equation (3.2) is in the limit point case near zero and 
infinity, the radial operators are self-adjoint in the Hilbert space {L2([wc, dr)}’. The 
spectra of these operators contain no discrete eigenvalues, according to the asymptotic 
behaviour near infinity stated above. More precisely, we quote (Weidmann 1971) the 
following theorem. 
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Theorem 3.1. The essential spectrum of each radial Dirac operator is continuous and 
covers the whole real line. 

4. Uniformly convergent perturbation expansion 

Similarly to our rigorous solution of the Schrodinger equation, we try to expand the 
general solution of each radial Dirac equation (3.4) in terms of appropriate exponen- 
tial polynomials, keeping in mind the asymptotic behaviour (3.5) of solutions, and 
prove the uniform convergence of this perturbation series by an estimate of its 
coefficients. 

is solved by the convergent series 

(4.1) 

with polynomials p',fi' and q $ )  determined by the recursion scheme which follows 
from insertion of the series (4.2) into equation (4.1) and comparison with respect to 
powers of e2'. For 1 b 0: 

The corresponding recursion scheme for PLY? and qk;? can be obtained from the above 
one by interchanging plt:l'*q(nrr' and A - p ,  

The series (4.2) converges uniformly on each compact subset of C, and it converges 
uniformly on the negative real line. Therefore, starting with the polynomials 

pbtl ' (x)= 1 and q{,?)(x) = 0 f o r l z 0 ,  

for I < 0, 
(4.4) p - ~ - ~ , ~ ( x ) = O  (+) and q c / ( x ) =  1 
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we reach the limits 

in agreement with the asymptotic solutions (3.5). 

(4.10) 
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We simplify these inequalities using (2n - k + 2)/2n 4 1 and (2n - k + 1)/2(n + 1 )  G 1, 
and iterate them to obtain 

pp!; s c [pIy")+(l+r)O(kY'I)+77p~-l , l ) ] ,  k =0 ,2 , .  . . , 2n -2 ;  

up:l)s 1 [p(kY'I)+(l+r)O(kY'I)+77plr-l,l)], k =0 ,2 , .  . . , 2n  -4; 

pi:'? s [p(kY'I)+(1+5)0(kY'I)+77p~-l,l)], k = 1 , .  , . , 2n  -3;  

n 

v=:(k+2) 

n 

u=:(k+2) 

n 

u =!(k + 1)  
n (4.11) 

s + ( 1  + &"'" + 77PyJ) I, k =  1 , .  . . , 2n -5 ;  
u = : ( k + l )  

(n I )  (n-1.0 (n-1 0 ( n I )  (n-1.1) 

(n I )  (n I )  (n-1.1) (n 0 (n 0 
u2;-2 s P 2 n - 3  +&2n-; +u2; -3  f T P 2 n - 3  9 n 2 2 ;  

v~n-1 Q u 2 n - 2  + ~ 2 n - 2  7 P 2 ;  s P2r;-1 +ru$21, rial; 
here we have defined pi"'" = 0 for k > 2n. Iterated insertion then leads to the result 

k = l , 3 , 5  , . . .  . , 2 n - 1 ,  
and 

(the same sum), k = 1,3 ,5 , .  . . , 2n -3 ;  ( n - 0  ff k + l  
u k + 1  

k = 0 , 2 , 4 , .  . . , 2n -2 ,  
and 

(the same sum), k = 0 , 2 , 4  , . . . ,  2n-2;  a=2+6+77. ( n l )  t i l  
(T&;l sff 

Obviously these sums are majorised by 
nk- l  "k 

. . .  1 1 1. k + l  f 5 
ff 

n l = l  nZ=l n k = l  n k + , = l  

By induction with respect to k we prove the identity 

Therefore we obtain 

( n f )  k + l  n + k  
P k + i s f f  ( k + l ) ,  k = 0 , 1 , 2 , .  . . , 2 n - 1 ;  

u k + l - f f  ( k + l ) ,  k = 0 , 1 , 2 , .  . . , 2n -2 .  
(n.l)< k + l  n + k  

(4.12) 

(4.13) 

(4.14) 
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Thus we get finally 

This estimate allows some majorant which implies uniform convergence on each 
compact subset of the complex plane, and especially uniform convergence on the 
negative real line, of the series (4.2). This completes the proof. 

The limit (4.5) shows that our series (4.2) represents the physically relevant 
solutions of equation (4.1). The expansion (4.2) can be generalised to an uniformly 
convergent series, which represents the general solution of equation (4.1) and exhibits 
the asymptotic behaviour (3.5) in the limit x -+ --CO. 

5. Conclusion 

Solutions of the Schrodinger and Dirac equations for electrons in logarithmic poten- 
tials have been given in terms of perturbation expansions, whose uniform convergence 
we have proved by an estimate of their coefficients. In this connection it seems 
worthwhile to examine the convergence behaviour of differential equations in the 
following general sense. Given a system of linear differential equations with 
exponential polynomial coefficients and entire solutions only, try to prove uniform 
convergence of an expansion in terms of exponential polynomials, analogously to 
corresponding theorems about the representation of holomorphic solutions as power 
series. 

Concerning our asymptotic solutions derived from stability theorems for systems 
of linear differential equations, we shall try to understand this asymptotic behaviour as 
the classical limit of quantum mechanics in the sense of JWKB, especially with respect 
to the electron spin. 

Our present efforts are devoted to the calculation of measured electron inter- 
ferences (Mollenstedt and Duker 1956, Donati et a1 1973, Merli et a1 1976) by 
imposing appropriate boundary conditions in order to determine the experimentally 
cut off potential and the central wire. 
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